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Entropy generation in fully-developed flow through a duct with heat transfer is discussed. Methods are
presented to minimize entropy generation by adjusting the shape of the duct’s cross-section. Choosing a
different cross-sectional shape allows for control of the competing fluid flow and heat transfer irreversi-
bilities. By controlling the competing irreversibilities, the total entropy generation rate can be minimized.
Given the flow rate, heat transfer rate, available cross-sectional area, and the fluid properties, a general
design correlation is presented that allows for a determination of the optimal shape of a duct.
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1. Introduction

Forced convection heat transfer in a flow passage is affected by
two types of losses, namely, loss associated with heat transfer
through a temperature difference and loss associated with fluid
friction. Entropy generation minimization has been proposed as a
criterion for the design of flow passages in internal flow forced
convection heat transfer configurations. Because entropy is gener-
ated by friction encountered in flowing fluids and by heat transfer
through a temperature difference, a calculation of the overall en-
tropy generation allows for an evaluation of these losses on a com-
mon scale. Moreover, because the entropy generation is a direct
measure of the irreversibilities associated with heat transfer and
fluid friction, the overall performance of a device containing heat
transfer passages can be improved by calculating and minimizing
the total entropy generation of the convective heat transfer pro-
cess. Numerous studies have shown that in convective heat trans-
fer arrangements the fluid friction and heat transfer losses are
coupled, and that attempts to reduce entropy generation associ-
ated with heat transfer will increase the entropy generation asso-
ciated with fluid friction, and vice versa [1,2]. This coupling
between fluid flow and heat transfer irreversibilities suggests that
the geometry and operating conditions can be optimized to mini-
mize the overall entropy generation.

In many instances, the design engineer is faced with integrating
coolant passages into an existing piece of equipment, where the
space occupied by the coolant passage is at a premium and the
available flow rates may be limited by the size of an existing or a
ll rights reserved.
retrofit fan or pump. In these situations, where a coolant passage
must be designed so that the cross-sectional area is restricted to
some value and where the flow rate through the coolant passage
is dictated by the available equipment, one may ask the question:
Is there an optimum cross-sectional shape (a circular cross-section,
a square, a rectangle, etc.) for the coolant passage that minimizes
entropy generation and allows for the best performance?

A number of studies have focused on the calculation and mini-
mization of entropy generation in the fundamental fully-developed
convective flow configuration in a duct. In most of these studies
the entropy generation in a duct with a particular cross-sectional
shape is calculated, and the entropy generation is minimized by
adjusting the size (hydraulic diameter or cross-sectional area) of
the duct. References can be found where entropy generation is cal-
culated and minimized in ducts with various cross-sectional
shapes for laminar and turbulent flow configurations, with con-
stant heat transfer rate per unit length, with constant heat flux,
or with constant wall temperature, and in flows with temperature
dependent viscosity [3–9].

A few past studies have attempted to compare the entropy gen-
eration in ducts with different cross-sectional shapes and to deter-
mine the cross-sectional shape that will yield minimum entropy
generation [10–12]. Sahin finds that for high Reynolds number
flows where fluid friction irreversibility dominates, the optimal
shape for a flow channel is the circular shape in both laminar flow
with a constant wall temperature [10] and in turbulent flow with
constant wall heat flux [11]. Sahin, however, comes to these con-
clusions after evaluating the entropy generation in a flow of water
over rather limited ranges of parameters. Because of the limited
parameter space investigated, some questions still remain on the
subject of the optimal cross-section for convective heat transfer.
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Nomenclature

A cross-sectional area
Bo duty parameter
Cf coefficient in friction factor
Ch coefficient in Nusselt number
cp specific heat
Dh hydraulic diameter
dT
dx axial temperature gradient
f Darcy friction factor
k thermal conductivity
_m mass flow rate

Nu Nusselt number
P perimeter
Pr Prandtl number
_q0 heat transfer rate per unit length
RA area based Reynolds number
Re Reynolds number

_S0gen entropy generation per unit length
T temperature

Greek
a exponent in Nusselt number
b exponent in Nusselt number
c exponent in friction factor
l viscosity
q density
/ irreversibility distribution ratio
v shape factor

Subscripts
opt at the optimum
min minimum value
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For instance, over what ranges of parameters is the circular cross-
section best (to minimize entropy generation)? And, does a general
design correlation exist to suggest the shape of an optimal cross-
section for minimum entropy generation? To answer these ques-
tions, equations are developed here that allow for a determination
of the optimal shape of a duct’s cross-section given the available
cross-sectional area, the heat transfer rate to or from the duct,
the flow rate through the duct, and the fluid properties for fully-
developed flow.

In Section 2, the equations for entropy generation and the equa-
tions describing the geometries that minimize entropy generation
in steady-state flow through ducts are presented for both laminar
and turbulent fully-developed flow with constant heat transfer
rate per unit length. In Section 3, these equations are used to repro-
duce many of the results that can be found in the previous litera-
ture for flows through a duct of specified shape, where entropy
generation is minimized by adjusting the size of the cross-section.
Also in Section 3, new results are presented for flow in a duct of
specified cross-sectional area, where entropy generation is mini-
mized by adjusting the shape of the cross-section. These results
are used to show under what circumstances a particular cross-sec-
tional shape will minimize entropy generation. Throughout Section
3, a number of numerical examples are used when discussing re-
sults. Finally, conclusions are drawn in Section 4.
m
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Fig. 1. The general flow and heat transfer configuration.
2. Entropy generation in steady-state flow through ducts

Consider the general internal flow configuration shown in Fig. 1.
Fluid flows through a duct with a cross-sectional area A, a perime-
ter P, and a hydraulic diameter Dh = 4A/P. The shape of the cross-
section is arbitrary but constant over the entire length of duct. A
single-phase, incompressible and Newtonian fluid flows through
the duct with a mass flow rate _m at a bulk temperature T. Heat is
transferred to the duct at a rate (per unit length) of _q0, through
the duct wall to the fluid across a temperature difference DT. Fol-
lowing Bejan [2], for DT� T, the entropy generation rate per unit
length is given by

_S0gen ¼
_q02D2

h

4NukAT2 þ
1
2

f _m3

q2A2TDh

; ð1Þ

where Nu, f, q, and k are the Nusselt number, the Darcy friction fac-
tor, the fluid density, and the fluid thermal conductivity,
respectively.
Using the same notation as Ratts and Raut [4], the Nusselt num-
ber and friction factor for fully-developed laminar or turbulent
flow are generalized as

Nu ¼ ChReaPrb; ð2Þ
f ¼ Cf Re�c; ð3Þ

where Re ¼ _mDh=Al is the Reynolds number, Pr is the Prandtl num-
ber, and l is the viscosity. The parameters Ch, Cf, a, b, and c are tab-
ulated in Table 1 for the circular cross-section and for rectangular
and elliptical cross-sections with varying aspect ratios [13]. Addi-
tionally, in Table 1 the shape factor, defined as v = P/Dh or
v ¼ P2=ð4AÞ ¼ 4A=D2

h , is shown for each cross-section. The shape
factor is used throughout the following analysis and in the interpre-
tation of results.

After substitution of Eqs. (2) and (3) into Eq. (1), the entropy
generation rate is given by

_S0gen ¼
_q02D2

h

4ChkAT2ReaPrb
þ 1

2
Cf _m3

q2A2TDhRec : ð4Þ
2.1. Ducts with specified cross-sectional shape

First, consider the entropy generation in a duct while holding
constant the flow rate, the heat transfer rate, and the fluid proper-
ties. Assume that the channel has a specified cross-sectional shape;
that is, v is specified. Entropy generation can then be minimized by
choosing the optimum cross-sectional size for the duct.

For any duct with a specified shape factor, the size is deter-
mined by either the hydraulic diameter or the cross-sectional area,
since these parameters are related through the shape factor
v ¼ 4A=D2

h . Furthermore, the definition of the shape factor is used
to write



Table 1
Shape factors and coefficients and exponents for the Nusselt number and friction factor correlations for fully developed laminar and turbulent flow in ducts with circular,
rectangular, and elliptical cross-sections.

Aspect ratio* (a/b) Perimeter (P) Cross-sect. area (A) Shape factor (v) a b c Cf Ch

Laminar flow
Circle – pD pD2/4 p 0 0 1 64 4.36
Rectangles 2(a + b) ab 2 + a/b + b/a

1 4 0 0 1 56.92 3.61
2 4.50 0 0 1 62.2 4.12
3 5.33 0 0 1 68.36 4.79
4 6.25 0 0 1 72.92 5.33
6 8.17 0 0 1 78.8 6.05
8 10.125 0 0 1 82.32 6.49

Ellipses (p/2)[2(a2 + b2) � (a � b)2/2]0.5 pab/4 (p/8)[3(a/b + b/a) + 2]
1 p 0 0 1 64 4.36
2 3.73 0 0 1 67.28 4.56
4 5.79 0 0 1 72.96 4.88
8 10.36 0 0 1 76.6 5.09
16 19.71 0 0 1 78.16 5.18

Turbulent flow
Circle – pD pD2/4 p 0.8 0.4 0.2 0.184 0.023
Rectangles 2(a + b) ab 2 + a/b + b/a

1 4 0.8 0.4 0.2 0.184 0.023
2 4.50 0.8 0.4 0.2 0.184 0.023
3 5.33 0.8 0.4 0.2 0.184 0.023
4 6.25 0.8 0.4 0.2 0.184 0.023
6 8.17 0.8 0.4 0.2 0.184 0.023
8 10.125 0.8 0.4 0.2 0.184 0.023

Ellipses (p/2)[2(a2 + b2) � (a � b)2/2]0.5 pab/4 (p/8)[3(a/b + b/a) + 2]
1 p 0.8 0.4 0.2 0.184 0.023
2 3.73 0.8 0.4 0.2 0.184 0.023
4 5.79 0.8 0.4 0.2 0.184 0.023
8 10.36 0.8 0.4 0.2 0.184 0.023
16 19.71 0.8 0.4 0.2 0.184 0.023

* For a rectangle: [a] is the length of the longest side and [b] is the length of the shortest side; for an ellipse: [a] is the length of the major axis and [b] is the length of the minor
axis.

T.A. Jankowski / International Journal of Heat and Mass Transfer 52 (2009) 3439–3445 3441
Re ¼ 4 _m
vlDh

: ð5Þ

For a constant flow rate, fluid properties, and cross-sectional shape,
Eq. (5) shows that the Reynolds number can only be varied by
changing the size of the cross-section (through changes in the
hydraulic diameter). Thus, the optimum cross-sectional size can
be found by determining the Reynolds number that minimizes en-
tropy generation.

Using the definitions for the shape factor and Reynolds number,
and substituting into Eq. (4),

_S0gen ¼
_q02

vChkT2Prb
Re�a þ 1

128
Cf v3l5

q2T _m2 Re5�c: ð6Þ

The only parameter not held constant in the above equation is the
Reynolds number. Differentiating and setting the result equal to
zero, one finds that the optimum Reynolds number is given by

Reopt ¼
128a

v4ð5� cÞCf Ch

� � 1
ð5þa�cÞ

Bo
2

ð5þa�cÞ Pr
�b

ð5þa�cÞ; ð7Þ

where

Bo ¼
_q0q _m

l5=2ðkTÞ1=2 ð8Þ

is the duty parameter. From the optimum Reynolds number, the
optimum irreversibility distribution ratio (entropy generation due
to fluid frictional losses divided by entropy generated by heat trans-
fer through a temperature difference, or, the last term in Eq. (6) di-
vided by the first term in Eq. (6) evaluated at Reopt) is evaluated as
/opt ¼
a

5� c
: ð9Þ

Finally, the departure of the entropy generation from the optimum
is evaluated as

_S0gen

_S0gen;min

¼ ð5� cÞ
ð5þ a� cÞ

Re
Reopt

� ��a

þ a
ð5þ a� cÞ

Re
Reopt

� �5�c

; ð10Þ

where _S0gen;min is the minimum entropy generation rate evaluated
when Re = Reopt.

Once the shape of the cross-section (the shape factor) is chosen,
the generalized results above can be used to find the optimum Rey-
nolds number (or equivalently, the optimum size of a cross-sec-
tion), the optimum irreversibility distribution ratio, and the
departure of the entropy generation from the optimum, provided
that the friction factor and Nusselt number correlations are known
and can be described by Eqs. (2) and (3).

2.2. Ducts with a fixed cross-sectional area

Now consider a similar situation, where the entropy generation
is minimized in a duct flow with constant flow rate, constant heat
transfer rate per unit length, and while holding the fluid properties
constant. Consider a channel with a specified cross-sectional area,
A, and minimize entropy generation by choosing the optimal cross-
sectional shape or shape parameter, v, for the duct.

Once again, using the definitions of the shape factor and the
Reynolds number, Eq. (4) can be arranged to read

_S0gen ¼
_q02Al2

4Ch _m2kT2Prb
Re2�a þ 1

2
Cf _m4

q2A3lT
Re�ðcþ1Þ: ð11Þ
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Furthermore, the Reynolds number is

Re ¼
ffiffiffiffiffiffi
4
vA

s
_m
l
: ð12Þ

Holding constant the fluid properties, the heat transfer rate, the
flow rate, for a duct with a fixed cross-sectional area, and assuming
that the coefficients and exponents in the Nusselt number and fric-
tion factor correlations are only weakly dependent on the shape of
the cross-section, the only variable in Eq. (11) is the Reynolds num-
ber. The Reynolds number can only vary with variations in the
shape of the cross-section.

To determine the optimal Reynolds number, or equivalently, the
optimal shape for a cross-section, differentiate with respect to the
Reynolds number and set the result equal to zero. This gives

Reopt ¼
ð2� aÞ

2ðcþ 1ÞCf Ch

� � 1
ða�c�3Þ

Bo
2

ða�c�3Þ R
�8

ða�c�3Þ
A Pr

�b
ða�c�3Þ; ð13Þ

where RA is a Reynolds number based on the area of the cross-sec-
tion, defined by

RA ¼
_m

lA1=2 : ð14Þ

An optimal shape factor for a given flow configuration is evaluated
from Eqs. (12) and (13) as

vopt ¼ 4
ð2� aÞ

2ðcþ 1ÞCf Ch

� � �2
ða�c�3Þ

Bo
�4

ða�c�3Þ R
16

ða�c�3Þþ2

h i
A Pr

2b
ða�c�3Þ: ð15Þ

Finally, while holding the cross-sectional area constant, the opti-
mum irreversibility distribution ratio and the departure of entropy
generation from the minimum are given by

/opt ¼
ð2� aÞ
ðcþ 1Þ ð16Þ

_S0gen

_S0gen;min

¼ ðcþ 1Þ
ð3þ c� aÞ

Re
Reopt

� �2�a

þ ð2� aÞ
ð3þ c� aÞ

Re
Reopt

� ��ðcþ1Þ

: ð17Þ
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Fig. 2. The shape factor that minimizes entropy generation for flow in a duct with
specified flow rate, heat transfer rate, cross-sectional area and fluid properties. The
figure is generated for circular, v = p, and rectangular, v = 4.5 and v = 10.125, cross-
sections in laminar and turbulent flow. The figure is for fluids with Pr = 0.7.
3. Results and discussion

3.1. Ducts with specified cross-sectional shape

Bejan determined the entropy generation, the irreversibility
distribution ratio, and the departure of the entropy generation
from the minimum for a circular cross-section in both laminar
and turbulent flow [3]. In Bejan’s analysis with the circular tube,
the mass flow rate, the heat transfer rate per unit length, and the
fluid properties were held constant and the tube diameter was
adjusted to minimize entropy generation. Using the values from
Table 1 in Eqs. (7) and (9) for the circular tube carrying laminar
flow, one finds that Reopt = 0 and that /opt = 0. As suggested by Be-
jan, for a circular tube with laminar flow, the tube diameter should
be large enough so that the entropy generation is dominated by the
heat transfer contribution, which will result in a small value for the
irreversibility distribution ratio, /. As discussed above, this behav-
ior for laminar tube flow is confirmed by the generalized expres-
sion in Eq. (9).

Using Table 1 and Eqs. (7), (9), and (10) for turbulent flow in a
circular tube, the following are evaluated:

Reopt ¼ 2:023Bo0:357Pr�0:071 ð18Þ
/opt ¼ 0:167 ð19Þ

_S0gen

_S0gen;min

¼ 0:857
Re

Reopt

� ��0:8

þ 0:143
Re

Reopt

� �4:8

: ð20Þ
These equations are identical to those of Bejan. In both laminar and
turbulent flow in circular tubes, the generalized results presented
here reduce to expressions that are identical to the expressions de-
rived by Bejan for circular tubes.

The generalized expressions in Eqs. (7), (9), and (10) can be used
to determine the optimal size (to minimize entropy generation) of
ducts with any cross-sectional shape, provided that the informa-
tion contained in Table 1 are known for the flow through the par-
ticular cross-section chosen. Notice from Eq. (7) that the optimal
Reynolds number is inversely proportional to the shape factor (if
the exponent multiplying the bracketed term is positive, which it
is for the cases considered in Table 1). Equivalently, observe from
Eqs. (5) and (12) that the size (hydraulic diameter or cross-sec-
tional area) is directly proportional to the shape factor. This result
was also observed by Ratts and Raut [4] in their investigation of
laminar and turbulent flow in ducts with uniform heat flux (as op-
posed to constant heat transfer rate per unit length studied here).
As with the uniform heat flux case studied by Ratts and Raut, the
equations developed here show that relatively larger cross-sec-
tional areas and hydraulic diameters are needed for shapes with
large shape factors (e.g., the large aspect ratio channels).

3.2. Ducts with a fixed cross-sectional area

For the case of internal convective heat transfer in a duct with a
specified cross-sectional area, Eq. (15) is used to determine an opti-
mal shape factor (a shape factor that minimizes entropy genera-
tion). To illustrate the determination of the optimal shape,
results from Eq. (15) are presented graphically in Figs. 2 and 3.

Eq. (15) can be manipulated to give

lnðBoÞ ¼ 5þ a� c
6þ 2a� 2c

� �
ln

Bo
RA

� �2
" #

þ a� c� 3
6þ 2a� 2c

� �
ln

ð2� aÞ
2ðcþ 1ÞCf Ch

� � 2
ða�c�3Þ vopt

4Pr2b=ða�c�3Þ

( )
:

ð21Þ

As shown in Figs. 2 and 3, Eq. (15) results in straight lines on
logarithmic scales when the parameters

Bo
RA

� �2

¼
_q02q2

l3kT
A and Bo ¼

_q0q
l5=2ðkTÞ1=2

_m; ð22Þ
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Fig. 3. The shape factor that minimizes entropy generation for flow in a duct with
specified flow rate, heat transfer rate, cross-sectional area and fluid properties. The
figure is generated for circular, v = p, and elliptical, v = 5.79 and v = 19.71, cross-
sections in laminar and turbulent flow. The figure is for fluids with Pr = 0.7.
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are plotted on the abscissa and ordinate, respectively. Eq. (21)
shows that, regardless of the shape of the cross-section, the slope
of the lines on the plot will be constant and will be determined
by the exponents in the Nusselt number and friction factor correla-
tions (although the slopes for laminar and turbulent flow may be
different from one another). Fig. 2 was generated using the expo-
nents and coefficients for the Nusselt number and friction factor
correlations in Table 1 for the circular tube and the rectangular
cross-sections. Fig. 3 was generated using the values in Table 1
for the elliptical cross-sections. Although the lines in Figs. 2 and 3
have a constant slope regardless of the shape of the cross-section,
both the shape factor and the value of the Prandtl number (Figs. 2
and 3 were generated for Pr = 0.7) of the fluid will shift the position
of the line on the plane. Most importantly, if one considers a flow
with a constant heat transfer rate per unit length and with constant
fluid properties, the parameter on the horizontal axis scales directly
with the cross-sectional area of the duct and the parameter on the
vertical axis scales directly with the mass flow rate.

For a particular convective flow with a given heat transfer rate,
as soon as the flow rate and cross-sectional area are chosen, Figs. 2
and 3 can be used to determine the optimal shape factor. By way of
example, consider a convective flow for which Pr = 0.7, (Bo/
RA)2 = 1012, and Bo = 1010, and assume that we will use either a cir-
cular cross-section or a rectangular cross-section. In Fig. 2, this
flow is represented by a point near the turbulent flow line of con-
stant vopt = p. These results would suggest that, for this particular
flow, a circular cross-section (with v = p) is the optimal cross-sec-
tion to minimize entropy generation.

Now consider the same flow, however, double the available
cross-sectional area. The flow parameters are now Pr = 0.7, (Bo/
RA)2 = 2 � 1012, and Bo = 1010. Notice that by increasing only the
cross-sectional area we move horizontally to the right in Fig. 2
(Eq. (22) shows that Bo remains constant after changing only the
area). With an available cross-sectional area that is twice as large
as in the previous example, the optimal shape factor is near
vopt = 10.125, suggesting that a rectangle with an aspect ratio of
8 is an optimal shape of the cross-section for the larger flow area
duct rather than the circular cross-section.

When the available cross-sectional area of the flow channel is
doubled, the resistance to flow in the duct is reduced, thereby
reducing the entropy generation associated with fluid friction.
However, Eq. (16) indicates that in both examples above, the opti-
mal irreversibility distribution ratio is
/opt ¼
ð2� aÞ
ðcþ 1Þ ¼

2� 0:8
0:2þ 1

� �
¼ 1; ð23Þ

for these turbulent flows. To maintain this optimal irreversibility
distribution ratio after an increase in the cross-sectional area (and
the associated reduction in fluid friction), the entropy generation
associated with heat transfer must also be reduced. The reduction
in entropy generation associated with heat transfer is accomplished
by choosing a cross-section with a larger perimeter compared to its
cross-sectional area (a cross-section with a larger shape factor).
Choosing a cross-sectional shape with a large perimeter increases
the surface area available for heat transfer, reducing the entropy
generation associated with heat transfer and restoring the balance
required by Eq. (23) for minimum entropy generation.

This example is continued by now considering a flow with half
the available cross-sectional area as in the original example, so that
Pr = 0.7, (Bo/RA)2 = 5 � 1011, and Bo = 1010. Referring again to Fig. 2,
we find ourselves at a point to the left of the constant vopt = p line.
From Eq. (15), one calculates for these flow parameters, vopt = 0.48.
Because the circular cross-section has the smallest possible shape
factor with v = p, a circle would be used in this flow configuration
to minimize entropy generation, although the true minimum could
never be achieved.

Figs. 2 and 3 show that flows with small flow rates generally re-
quire channels with larger shape factors to minimize entropy gen-
eration. For convective heat transfer with a low flow rate in a
channel with a large cross-sectional area (the lower right portions
of Figs. 2 and 3), the contribution to the total entropy generation by
fluid friction is relatively low. In this situation, the total entropy
generation is dominated by entropy generation due to heat trans-
fer. To minimize entropy generation, the shape factor can be in-
creased by introducing a geometry with more surface area
available for heat transfer.

Next, consider an adiabatic flow, for which _q0 ¼ 0. Circular or
nearly circular cross-sections are used throughout engineered
and natural systems to transport fluids while minimizing flow
losses (flow resistance) in adiabatic flows [14]. In the case of an
adiabatic flow, Bo = 0. In either laminar or turbulent flow, Eq.
(15) suggests that vopt = 0 for the adiabatic flow case. Again, be-
cause the smallest possible shape factor can be achieved with the
circular cross-section, the entropy generation minimization analy-
sis of Eq. (15) suggests that a circle is the most efficient cross-sec-
tion for adiabatic flow.

Although Eq. (15) does reproduce the well-known result that
the circular cross-section is the optimal shape for adiabatic flow
through a duct, the entropy generation minimization presented
here also provides a new result for ducts with forced convection
heat transfer. The correlation in Eq. (15) and the examples shown
above suggest that for flows dominated by heat transfer irrevers-
ibility (i.e., flows with large heat transfer rates, small flow rates,
and large available cross-sectional area, or equivalently, flows with
large Bo and small RA) the circular cross-section is not ideal and
large aspect ratio channels should be used to minimize entropy
generation.

3.3. Sensitivity of entropy generation to using a non-optimal shape
factor

The effect of using a non-optimal cross-section on entropy gen-
eration in flow through ducts with a fixed cross-sectional area and
an arbitrary shape can be determined by combining Eqs. (12) and
(17) to show that

_S0gen

_S0gen;min

¼ ðcþ 1Þ
ð3þ c� aÞ

v
vopt

 !�ð2�aÞ
2

þ ð2� aÞ
ð3þ c� aÞ

v
vopt

 !ðcþ1Þ
2

: ð24Þ
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Using the Nusselt number and friction factor correlations for
turbulent flow, the departure of the entropy generation from the
minimum is

_S0gen

_S0gen;min

¼ 1
2

v
vopt

 !�0:6

þ 1
2

v
vopt

 !0:6

: ð25Þ

Results from Eq. (25) are shown graphically in Fig. 4. The figure
shows that using a duct with a shape factor either ten times smal-
ler than the optimum or ten times larger than the optimum dou-
bles the entropy generated in the flow.

Although the entropy generation is increasing as one moves
away from the optimum shape factor, by moving away from the
optimum (v/vopt = 1) in opposite directions, the entropy genera-
tion is increased by different mechanisms. From Eq. (25), the irre-
versibility distribution ratio is

/ ¼
_S0gen;DP

_S0gen;DT

¼ v
vopt

 !1:2

: ð26Þ

With shape factors smaller than the optimum, v/vopt < 1 on the
left side of Fig. 4, the total entropy generation is dominated by the
heat transfer contribution and / < 1. To minimize entropy genera-
tion in this case, choose a cross-sectional shape with a larger shape
factor and consequently more perimeter and surface area available
for heat transfer. This choice of a cross-section with a larger surface
area reduces the entropy generation associated with heat transfer
while increasing the entropy generation associated with fluid fric-
tion. Moving toward an optimized cross-sectional shape will re-
store the balance between the fluid flow and heat transfer
contributions and will move the operating point closer to the point
of minimum entropy generation at v/vopt = 1.

If, however, the shape factor of the duct is larger than the opti-
mum, v/vopt > 1 on the right side of Fig. 4, the total entropy gener-
ation is dominated by fluid friction and / > 1. Here, entropy
generation is minimized by choosing a cross-section with a smaller
shape factor. Because a cross-section with a smaller shape factor
(such as the circle) has less perimeter for a given cross-sectional
area, flow resistance and fluid friction are reduced. By reducing
the shape factor and reducing fluid friction, the balance between
entropy generation by fluid flow and heat transfer will once again
be established and the total entropy generation will be minimized.

One more numerical example of entropy generation in an inter-
nal flow is used to illustrate the sensitivity of the entropy generation
to using non-optimal cross-sectional shapes. Bejan [3] presented an
example of minimum entropy generation for flow of air at atmo-
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Fig. 4. Sensitivity of the total entropy generation to using a non-optimal shape
factor in turbulent duct flow.
spheric pressure and a temperature of T = 1100 K (q = 0.32 kg/m3,
l = 4.35 � 10�5 kg/m s, cp = 1158 J/kg K, k = 0.072 W/m K, Pr = 0.7).
Air flows at a rate of _m ¼ 100 kg=h. Assuming a longitudinal temper-
ature gradient of dT/dx = 10 K/m and q0 ¼ _mcpdT=dx, one finds,
Bo = 2.6 � 1010. The duct has a circular cross-section. Using Eq.
(18), Bejan finds that the optimal Reynolds number is
Reopt ¼ 1:1� 104, which for a circular cross-section results in an
optimal diameter of 7.2 cm and a cross-sectional area of A = 41 cm2.

Now assume that this cross-sectional area is available and that
the shape of the cross-section can be altered to further minimize
entropy generation. Using the parameters above, RA = 1 � 104 and
Bo = 2.6 � 1010. Eqs. (13) and (15) for turbulent flow show that Re-
opt = 5.8 � 103 and vopt = 11.8. Eq. (25) shows that by not adjusting
the shape from the circular cross-section to the optimal cross-sec-
tion with vopt = 11.8, the entropy generation is

_S0gen

_S0gen;min

¼ 1:33: ð27Þ

In other words, entropy generation in the duct with the circular
cross-section is 33% higher than entropy generation in the duct with
the optimized cross-section occupying the same cross-sectional
area.
4. Conclusions

Entropy generation in fully-developed convective heat transfer
has been investigated. Generalized correlations to determine the
optimum cross-sectional shape of a flow passage to minimize en-
tropy production have been presented. The equations confirm the
well-known conclusion that in adiabatic flow, the circular cross-
section will minimize flow resistance, which is reflected by a min-
imization of the entropy generation. However, in flows with heat
transfer, the correlations developed suggest that the circular
cross-section may not always be ideal. In situations where the heat
transfer irreversibility dominates (with low flow rates, large avail-
able cross-sectional areas, and high heat transfer rates), a duct with
a large wetted perimeter (for example, a rectangular channel with
a large aspect ratio) will increase the surface area available for heat
transfer and will minimize the overall entropy generation.
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